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Abltract-The problem of the contact between a smooth, rigid indenter and an elastic quarter space
is solved using integral transform techniques. The indenter can have an arbitrary plan form and
can extend to the edge of the quarter space. Numerical results are given when a rigid. right~rcular
body is pressed into the top surface of the quarter space, while keeping its axis parallel to the surface
and perpendicular to the edge.

INTRODUCTION

The problem ofdetermining a Green's function for the elastic quarter plane or quarter space
is complicated by the nonseparability of the boundary conditions. The only methods that
appear to prove feasible for an effective solution are numerical ones. The case for normal
loading was first investigated by Hetenyi [I], who used the alternating method and iteration
to obtain an acceptable result. The method was also previously used by Hetenyi [2] to obtain
a solution to the quarter plane problem. Gerber[3] used Hetenyi's basic algorithm to extend
the investigation to the related frictionless contact problem and obtained accurate results,
provided that the indenter was not located too close to the edge of the quarter space.

Recently, Keer et al. [4] reinvestigated Hetenyi's problem for a concentrated load on a
quarter space. They applied a Fourier transform in the direction of the edge, and thereby
reduced the considered problem to that of a quarter plane, having a transform variable as
a parameter. Techniques similar to those used by Sneddon[S] for the elastic quarter plane
were also used in the solution to the reduced problem. In addition to normal loading,
concentrated shear loads parallel and perpendicular to the edge were investigated so that,
in principle, loading of any type could be treated.

The present analysis deals with the related contact problem. Here, it is assumed that a
rigid, frictionless indenter is pressed into an elastic quarter space. It is assumed that the
indenter can have an arbitrary plan form and that the contact can extend to the edge. Such
a contact problem for the elastic half space was solved by Ahmadi et al. [6] in their
investigation of non-Hertzian contact problems. The key to their solution was the fact that
Love's [7] solution for a rectangular "patch" was available that gave a complete descreption
of the stress state within the half space. The displacement at the center of the "patch" could
be calculated in closed form, and an integral equation was established, whose solution gave
both the area of the contact and the magnitude of the pressures over all of the patches
contained within the contact. The problem was solved by prescribing a load over an area
(larger than the correct area) and finding the correct area and distribution of pressures by
iteration.

A similar technique is used here. The Boussinesq concentrated load is integrated over an
area to obtain the solution for a rectangular patch having a constant normal load. By using
the results of Love's solution and by taking a Fourier transform along the edge, integral
equations similar to those of Ref. [4] are obtained, giving the load and deflection for a single
patch. Once the solution for a generic patch is obtained, then the method used in Ref. [6] can
be applied to the edge loaded contact problem. It should be pointed out that special
treatment is required to obtain results valid near the edge, and it appears that the method
of Ref. [I] can be used only for the case that the contact does not extend to the edge.

METHOD OF SOLUTION

This analysis will consider the problem of the contact between a smooth, rigid body and
an elastic quarter-space. In the investigation presented here the numerical scheme will be
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sufficiently general to include the case where the indenter extends to the edge of the quarter
space. The solution technique will rely upon the methods of the previous papers[4, 6], and
the reader is referred to them for some of the details not included here.

Formulation of smooth contact problem
The contact problem may be formulated by the following considerations. Let two

bodies, I and 2, be initially in contact at point 0, which is along the x-axis of an x-y
coordinate system in the common tangent plane (Fig. I). Since the bodies are frictionless,
only a normal load is assumed to act over the contact area U between the two bodies. the
separation functions between the two bodies before contact and after contact aref(x, y) and
e(x, y), respectively. The following conditions must be satisfied

N(x,y)~O

N(x,y)=O

e(x,y) =0

e(x,y) ~ 0

(x,y)eU

(x,y)¢U

(x,y)eU

(x,y)¢U.

(I)

(2)

(3)

(4)

If two points on the z, and Z2 axes far from the contact region in the two bodies are
brought together by a distance ~, which is the relative approach, then the distance of two
points A, B (AB is parallel to the z-axis, the common normal of the two bodies) will change
from J(x, y) to e(x, y) through the relation:

e(x,y) = f(x,y) + WI + W2 -~, (5)

where WI and W2 are normal displacements of the two bodies at points A,B due to the force

PN•

If the body 1 is assumed to be rigid, we have that WI =0; then, the displacement W2

can be expressed as

W2(X,y) = ItG(x,y; x', y')N(x',y') dx' dy', (6)

where G(x, y; x', y') is the displacement at point (x, y) due to a concentrated force at point
(x',y') for the quarter space (x ~ 0, z ~ 0 in Fig. 2). The contact problem can be

z

--~..aLUll~F--- :r
z

Z.

Fig. I. Contact of two elastic bodies before and after the application of load.



formulated as follows:

A contact problem for the elastic quarter space
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Fig. 2. Geometry and coordinates for quarter space.

SIS

(7)e(x,y) =!(x,y) +ftG(x,y;x',y')N(x',y')dx'dy'-c5.

By the definitions as given in eqns (l)-{4) for (x,y)el2, e(x,y) =0, and eqn (7) becomes
an integral equation with unknowns, N(x,y), c5 and l2. By use of the equilibrium condition

ft N(x',y')dx' dy' = PH'

and by the inequality condition that

N(x,y) ~ 0 in l2.

(8a)

(8b)

A numerical method can be developed for the indentation of an elastic quarter space by
a rigid indenter.

Suppose that !(x, y) is symmetric with respect to the x -axis. If this is the case then
N(x,y) is also symmetric with respect to the x-axis, i.e. N(x,y) =N(x, -y) and eqns (7)
and (8) become

ft.lG(X,y; x',y') + G(x,y; x',-y')]N(x', y') dx' dy' = c5 - !(x,y)(x,y)el2' (9)

and

ft. N(x',y')dx' dy' =PH/2

where a' is half of the contact area.

(10)

Numerical solution
The method of solution follows the numerical scheme given in Ref. [6]. The size of the

contact region is overestimated, the resultant contact area is divided into rectangular
patches, and the pressure over each patch is assumed to be constant. The integral in eqn
(9) is subsequently evaluated over a generic rectangular region 2a x 2b, (see Fig. 2); this



516 L. M. K.EEIl el at.

result produces a displacement at (x, y) equivalent to that due to the normal force
Nj =N(x',y')4ab applied to the patches whose centers are at (x',y') and (x',-y').

The displacements caused by these two patches of traction can be obtained as in
Ref. [I}. Image patches are put on at (-x',y') and (-x', -y') and the resulting normal
stress g(y, z) in the y-z plane are computed from Love's solution[7}, Appendix 1. These
stresses are removed by the previous algorithm[4}. The load-displacement relation on the
surface for the half space can be obtained by integrating Boussinesq's solution, which is

l-v2ix.+aiY'+b dudr l-v2
-E J f =-E [d(i +a,ji +b)+d(i -a,ji -b)

7[ X'-4 y-b (x - U + (y - r)2 7[

- d(i - a, ji + b) - d(i +a, ji - b)] (11)

where

d(r, s) = r log(s + Jr2+ S2)+ s log(r + Jr2+ S2). (12)

Here, i = x - x', ji =y - y', E is Young's modulus, and v is Poisson's ratio.
The displacement due to the residual stress in the y - z plane can be obtained as in

the previous paper[4} and involves the solution of the following coupled integral equations:

where

and

p(x, P) + folX> K(x, C; P)9(C, P)dC =0 0 < x < 00

q(x,P)+ folX> K(x,C;P)p(C,P)d' =g(x,P) O<x < 00

2{ p2
XC

2 [nK(x, C; P) =~ x 2+ ,2 K~pJx2 + (2)_ (1- 2v) '2 P exp (-PO

(13)

(14)

(15)

g(x,P) = f: g{x,y)exp(ipy)dy, p{x,P)= f:p{x,y)eXP{iPY)dY. (16)

Here, Ko(s) and K2(s) are modified Bessel functions of the second kind with orders 0 and
2, respectively. Once the Fourier transforms pand qare solved from eqns (13) and (14),
then the transformed displacement at the top surface (x-y plane) can be calculated as
follows:

The displacement in terms of the x, y variables is

W(X,y)=2
I
n f~1X> w(x,p)exp(-ipy)dp =1~;l2~ f:1X> Wo(x,p)eXP(-iPY)dP]. (18)

In the present example g(x, y) is symmetric in the y-direction and the Fourier exponential
transform is easily reduced to a Fourier cosine transform as
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"( (J)= 4sin({Jb)COS({Jy'){_~fx'+G {J~XC2 K({JJx2+C2)dC
g x, P 7r x'-. X2+C2 2

+ (1 - 2v{eXP(- (J(x' - a» - exp( -(J(x' +a»

-~ {J2 f:-+: LX Ko<fJJS 2+ u~ du ds]}

"( . h) =4 sin (Pb) cos ({Jy') "( (J)g x, _ p g. x, .
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(19a)

(19b)

The double integral on the r.h.s. of (19) can easily be reduced to a single integral by
transforming the variables into polar coordinates.

It is further noted that y' and b do not appear in g.(x, (J). Let

"( {J =4 sin ({Jb) cos (JJy') "( (J)
P x, - {J Pt x,

"( (J) = 4 sin (JJb) cos ({Jy') • ( (J)q x, - {J q. x,

• ( (J) =4 sin ({Jb) cos (JJy') • ( (J)
Wo x, - {J Wt x,

(20)

(21)

(22)

then the integral equations to be solved for are still eqns (13) and (14), but now p, t/ and
i are replaced by p" til and i" respectively. The displacement is written as follows:

( ) _ 1 - v2
~ iQ') sin ({Jb) cos ({Jy') cos ({Jy) • ( (J) d{J

W x, y - E (J WI x, .n n 0
(23)

For a series of patches with the same x' and a, the sets of integral equations needed to
be solved are reduced to one.

Special consideration must be given to the case when x' = a and the patches are to be
calculated at the edge. For this case the transform i. is split into two parts as

The terms in the curly bracket decay exponentially for large fJ, but the first term will
remain constant for small x. By substituting i.(x, (J) = -2v exp (-fJx) into eqn (14) and
rearranging the integrand, one finds that (J and x appear in pairs. Therefore,

PI(X, (J) =P.(JJx)

t/I(X, fJ) =t/.(JJx)

(25)

(26)

Fig. 3. Contact between cylinder and quater space: (a) side view, (b) front view.
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Wl(X, P) =21eo
PI(~' PHKo(P(x + ~» + Ko(plx - ~I)]d~

2 [eo
=pJo p,(peHKo(px + P,) + Ko(!px - pel)] dP~

w,(x, P) == ~ wT(px).

(27a)

(27b)

The portion of w(x, y) due to - 2v exp (- px) for p larger than some value, say 1/(x' +a)
can be obtained as

( ) _I-v24ieo sin (Pb) cos(py') cos (Py) "( R)dRw x,y --- WI x, I' I'
7tE 7t ./(x·+Il) P

=1-v2~ [eo sin(Pb)COs~y')cos(PY)wl(Px)dP
7tE 7t J"(x' +1» P

=1- v
2
~ feo X sin(eblx)cos(~'lx)cos(eYlx) wT(e) de. (28)

7tE 7t X/CX + Il) e

From eqn (17) it is seen that when P...0, the displacement WI will be logarithmically
singular. The displacement at the point 0 is

(29)

Ifeqn (13) and (14) are multiplied by Ko(px), integrated with respect to x from 0 to infinity.
and the following relation employed (see Appendix 2,[8]),

(30)

then they can be written as

l eo 2i'" i'"Pl(X, P)Ko(px)dx +- ql(X' P)Ko(px)dx - (1- 2v) H(x, P)ql(X, P) dx = 0 (31)
o 7t 0 0

reo iMx,P)Ko(Px)dx +~ [eo PI(x,P)Ko(px)dx-(1-2v) [", H(x,P)PI(x,P)dxJo 7t Jo Jo
= -~ J::: Kt,(px)dx +(1- 2v) J::: H(x, fJ) dx (32)

where

The integral involving PI can be written as

i'" 27t fX+Il . (1- 2v) {i'"Pl(X, fJ)Ko(fJx) dx = 2 _ 4 Ko(Px) dx + 2 _ 4 H(x, fJ)
o 7t x -Il 7t 0

fX+Il }
x [7tq,(x,P)-2PI(x,P)]dx - X-Il H(x,P)dx

(33)

(34)
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where the first term of the right-hand side would cause a singularity. However, the
displacement due to this part will be (eqn 18):

1- v2 8
w(O,y) = ---;E 1t(1t2 _ 4) {heY' + b +y) + h(y' + b - y) + heY' - b +y)

+ heY' - b - y)} (35)

where

h(s) = sign (s){<x' - a)sh -1(lsl/(x' - a» - (x' +a)sh -1(lsl/(x' +a»

-Is Ish -I«X' + a)/lsl) + Is Ish -I«X' - a)/lsl>l (36)

which is not singular and sh -I(S) is the inverse hyperbolic sine function.
In summary, the problem, therefore, is to solve eqns (9) and (10) where N(x,y), /) and

a' are unknown quantities. As mentioned earlier, the method of numerical solution
follows the numerical scheme given in Ref. [6]. The size of the contact region is
overestimated, the resultant contact area is divided into rectangular patches, and. the
pressure over each patch is assumed to be constant. The numerical solution can hence be
obtained by replacing the integral equations by an appropriate set of simultaneous linear
equations. Solving the equations, we find that some of the patches have negative pressure,
and the sum ofpositive pressure should be greater than the total load. Those patches which
have negative pressures are deleted and the equations are solved again until all patches
have only positive pressures. This iteration scheme may be applied to other geometries if
the load-surface displacement relation is known. For the present case the problem depends
on the utilization of the quarter space solution[4].

The problem for the quarter space is formulated (as in [4]) by applying a Fourier
transform to the loading and potentials in the direction of the edge of the quarter space.
It is reduced to solving, eqns (13) and (14) and the other quantities are related to p and
ij. In solving eqns (13) and (14), pand ij are split into two parts, regular and singular. The
resulting equations are solved numerically using 20-point Gauss-Legendre integration
scheme. The infinite domain is transformed into the interval (- I, I) by the transformation
e=tan (n(1 + u)/4), which provides a finer mesh near the corner of the quarter space,
where (1) the transforms pand ij are functions that vary rapidly in the x and z directions
and (2) the kernel has a high peak when both x and ~ are small. Some modification is made
in order to avoid the high peak in the kernel. The same technique is applied in calculating
the transformed surface displacement which has weak singularity at x = ein eqn (17). To
invert the displacement in eqn (18), a 26-point Gauss quadrature, in which an lJ-point
Radau Gaussian quadrature and a IS-point Gauss-Laguerre quadrature for the region
(0, I) and (I, 00), were used.

EXAMPLE

An example is solved in which a rigid, right-circular cylinder (body I) is pressed into
the top surface of the quarter space, while keeping its axis parallel to the x-axis. The shape
of the cylinder in the region ofcontact is assumed to be approximated by a parabola (Hertz
approximation in the y-direction) as

where R is the radius of the cylinder (equal to 63.5 mm).
The material of the quarter space (body 2) is chosen to be steel with a Young's modulus

of E =206.55 GPA. The total normal load, PH' is 1.3344 x IQ$N. Poisson's ratio is
allowed to vary; the results are shown in Figs. 4-6 for Poisson ratios of 1/6, 1/3 and 1/2,
respectively. The trend shows clearly that as Poisson's ratio is increased, the region of
contact near the edge becomes more narrow and the surface stress near the edge decreases
in magnitude. For Poisson's ratio of 1/2 there is a distinct narrowing, when the distance
from the edge is about equal to the contact width.
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-f.

Fig. 4. Stress distribution for quater space indented by riaid riaht circular cylinder (v - 1/6. at - 0):
(a) stress distribution, (b) contact reaion.
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Fig. 5. Stress distribution for quarter space indented by riaid riaht circular cylinder (v - 1/3. at - 0):
(a) straa distribution. (b) contact l'elion.
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a.

-4.

4. II. II.
(b)

Fig. 6. Stress distribution for quarter space indented by riaid ript circuJarcylinder (v =1/2, II =0):
(a) stress distribution, (b) contact region.
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Fig. 7. Stress distribution for quarter space indented by riaid ript circular cylinder (v = 1/6,
II = 0.005): (a) stress distribution, (b) contact resion.
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(a)

10"'.

(b)••2. •• II. II. 10. 12. 1
lQI

2.

o.

-2.

Fig. 8. Stress distribution for quarter space indented by rigid right circular cylinder (v = 1/3.
II "" O.OOS): (a) stress distribution, (b) contact region.

(a)

2

o.

-.2.

f--:t----i I I f I
. 2. •. 8. 8. 10. 12.

lQI

--l
14. {b)

Fig. 9. Stress distribution for quarter space indented by rigid right circular cylinder (v = If2.
a = O.OOS): (a) stress distribution, (b) contact region.

As a second example the cylinder axis is assumed to have a misalignment slope of0.005
(angle =0.005 radians). Although this example is for an inclined cylinder, the overall result
is essentially the same (Figs. 7-9). As Poisson's ratio is increased, the contact footprint
tends to decrease, relatively, near the edge; it has the smaUest value at the edge for
Poisson's ratio of 1/2. Also, the edge contact stress tends to decrease as the Poisson's ratio
increases to 1/2.
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APPENDI X I
1

g(y, z) = -- {2vA + (I - 2v)B - zC}
It

where

A = tan-I (a +x')(b - y + y') + tan-I (a -X')(b
R

- y +Y') + tan-I (a -X')(b
R

+ y - y')
zR1 Z 2 Z ,

1 (0 + x')(b + y - y') 1 (a + x')(b - y - y') 1 (a - x')(b - y - y')
+~- +~- +~- R

zR4 zR, z 6

1(a -x')(b + y + y') I (a +x')(b + y + y')+ tan - + tan - -'-----:....;,-=-~-=--'-

zR7 zR,

b +' b+ ' b +' b+ 'B =tan - I - Y Y + tan -I y - Y + tan - 1 - Y Y + tan-I y - y
a+x' a+x' a-x' a-x'

b - y - y' b +Y + y' b - y - y' b + y - y'+ tan-I + tan- 1 + tan- 1 + tan- I---
a-x' a-x' a+x' a+x'

_I z(b - Y + y') 1 z(b - y +y') _I z(b +Y - y') _I z(b +Y - y')
- tan + tan- tan - tan

(a + x')R1 (a - x')R2 (a - x')R, (a + x')R4

_,z(b-y-y') _Iz(b-y-y') _,z(b+y+y') _,z(b+y+y')
-~ -~ . -~ -~

(a + x')R, (a - x')R6 (a - x')R7 (a +x')R,

C = a + x' (b - y +y' +b +y - Y') + a - x' (b - y +y' +b + y - Y')
(a + X')2 + Z2 R1 R4 (a - X')2 + Z2 R2 R,

+ a +x' (b -y -y' + b +y+Y')+ a -x' (b -y -y'+ b+Y + Y')
(a +X')2+ Z2 R, r, (0 _X')2+ Z2 ~ R,

R~ =(a + X')2 + (b - y +y')2 + Z2 R~ = (a + X')2 + (b _ y _ y')2 + Z2

R~ = (a - X')2 + (b - y + y')2 + Z2 R~ =(a - X')2 + (b _ y _ y')2 + Z2

R~=(a -x')2+(b +Y _y')2+ Z 2 R~=(a -x')2+(b +y +y')2+ Z 2

R~ =(a + X')1 + (b +y - y')2 + Z2 Ri = (0 + x')2 + (b +Y + y')2 + Z2.

APPENDIX 2

We wish to prove that

f'" ~lX(:2 K2UJJx1 + (2)Ko(Px)dx = Ko(P~).Jo x + ..

If Parseval's relation for Hankel transform is used, then
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Using the following identities[B):

L. M. KEER et al.

we obtain

(30)


